		Name:
Score:	Date Completed:	Date Started:
Score:	Date Completed:	Date Started:

Learning Activity Sheet

	Accelerat	tion	
I. Directions: In the space provided, write1. If you use the same force to push			
car has less mass.			
2. When riding a bicycle, the bicycl	e acts as the mass, and t	the leg muscles pushing on the	e pedals of the bicycle is the
force.			
3. Newton's law of acceleration con	ceptually and mathema	tically describes the accelerati	on of an object in terms of
its mass and the net force applied		-	-
4. The heavier person will walk fast	er because he/she has g	reater acceleration.	
5. The acceleration depends inverse	ly upon the object's ma	SS.	
II. Directions: In the space provided, write1. A net force of 3 newtons pushes a			
A. 5 m/s2	B. 10 m/s2	C. 20 m/s2	D. 30 m/s2
2. Which of the following types of f	force applies to cables, s	strings, and ropes?	
A. applied force	B. friction	C. Tension	D. weight
3. A 35-kilogram box is pulled along	g a frictionless floor by	Lee with 25 newtons to the rig	ght and by Ty with an
unknown force to the left. What	is the F_{net} on the box?		
A. + 10 N	B. + 25 N	C 10 N	D 25N
4. If the same force is applied to an	object with a large mas	s, what happens to the accelera	ation of the object?
A. It decreases.	B. It increases.	C. It remains the same.	D. It is equal to the mass.
5. If you stand on a weighing scale	in an elevator and notic	e that your weight is decreasing	g, what would you
conclude about the elevator?			
A. It accelerates upward.		C. It moves at a constant	velocity upward.
B. It accelerates downward. D. It moves at a constant velocity		t velocity downward.	
III. Directions: Solve the following problebelow.	ems involving Newton	's second law of motion. Write	your solution on the space

- 1. Find the acceleration of a 2-kilogram block pushed on a smooth floor with a 20-newton force.
- 2. With the same acceleration, and a force of 40 newtons, what mass can be moved?