

Date Started:	Date Completed:	Score:
	Learning Activity	Sheet
Applications of the Law of Conservation of Mechanical Energy		
A . Choose the letter of the	e correct answer and write it in the blank	c provided before each number.
For items 1 and 2:		
the ground. It raj		assengers, starts from rest at a height of 60 m above ctionless track, completes the 360° loop, which has
1. What is the veloc	city of the train when it reaches the top	of the loop?
A. 26 m/s B. 28 m/s C. 32 m/s D. 34 m/s		
2. What is the veloc	city of the train at ground level (the bott	om of the loop)?
A. 26 m/s B. 28 m/s C. 34 m/s D. 36 m/s		
	<u> </u>	top of a cupboard of height 2 m. By lifting the bag g potential energy. What is its potential energy?
A. 16.6 J B. 17.6 J C. 18.6 J D. 19.6 J		
4. If air resistance i	s negligible, what happens to the total n	nechanical energy of a free-falling body?
A. remains const B. increases C. becomes zero D. decreases	ant	

Name:

 5. A 50 g object is shot vertically up in the air with a velocity of 200 m/s. Using the principle of conservation of mechanical energy, what is its kinetic energy?
A. $EK = 1,000 J$
B. EK = 2,000 J
C. EK = 3,000 J
D. $EK = 4,000 J$
Explain how the law of conservation of mechanical energy is applied to everyday situations. Cite at least five examples. Write your answers on the space provided. (5 points)